Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778286

RESUMO

Traditional methods for site-specific drug delivery in the brain are slow, invasive, and difficult to interface with recordings of neural activity. Here, we demonstrate the feasibility and experimental advantages of in vivo photopharmacology using "caged" opioid drugs that are activated in the brain with light after systemic administration in an inactive form. To enable bidirectional manipulations of endogenous opioid receptors in vivo , we developed PhOX and PhNX, photoactivatable variants of the mu opioid receptor agonist oxymorphone and the antagonist naloxone. Photoactivation of PhOX in multiple brain areas produced local changes in receptor occupancy, brain metabolic activity, neuronal calcium activity, neurochemical signaling, and multiple pain- and reward-related behaviors. Combining PhOX photoactivation with optical recording of extracellular dopamine revealed adaptations in the opioid sensitivity of mesolimbic dopamine circuitry during chronic morphine administration. This work establishes a general experimental framework for using in vivo photopharmacology to study the neural basis of drug action. Highlights: A photoactivatable opioid agonist (PhOX) and antagonist (PhNX) for in vivo photopharmacology. Systemic pro-drug delivery followed by local photoactivation in the brain. In vivo photopharmacology produces behavioral changes within seconds of photostimulation. In vivo photopharmacology enables all-optical pharmacology and physiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...